1的2次方+2的2次方+3的3次方+······+2002的2002次方除以7的余数是_________.
问题描述:
1的2次方+2的2次方+3的3次方+······+2002的2002次方除以7的余数是_________.
急
答
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^2+2^2+3^2+...+2001^2+2002^2=2002*(2002+1)*(2*2002+1)/6=2002*2003*4005/6=1001×2003×1335=26766790051001为7的143倍,能被7整除.2676679005÷7=3823827...