已知数列{an}的通项公式an=2n+1,由bn=a1+a2+a3+…an/n所确定的数列{bn}的前n项之和是

问题描述:

已知数列{an}的通项公式an=2n+1,由bn=a1+a2+a3+…an/n所确定的数列{bn}的前n项之和是

an=2n+1
bn=(a1+a2+...+an)/n
=[2(1+2+...+n)+n]/n
=[n(n+1)+n]/n
=n+2
Sn=b1+b2+...+bn
=(1+2+...+n)+2n
=n(n+1)/2+2n
=n(n+5)/2