求不定积分∫{ x^4 + [1/(3x)]-cos 2x } dx∫{ x^4 + [1/(3x)]-cos 2x } dx

问题描述:

求不定积分∫{ x^4 + [1/(3x)]-cos 2x } dx
∫{ x^4 + [1/(3x)]-cos 2x } dx

∫{ x^4 + [1/(3x)]-cos 2x } dx=(1/5)x^5+(1/3)ln(3x)-(1/2)*sin2x+C

∫{ x^4 + [1/(3x)]-cos 2x } dx
=∫ x^4dx +∫ [1/(3x)]dx-∫cos 2xdx
=1/5x^5+1/3ln(3x)-1/2sin2x+C (C为常数)