高一数学题 已知a ,b为正常数x, y为正实数 且a/x+b/y=1,则x+y的最小值

问题描述:

高一数学题 已知a ,b为正常数x, y为正实数 且a/x+b/y=1,则x+y的最小值
要有解题过程啊

若a/x+b/y=1(x,y,a,b属于R+),
则x+y的最小值为解:
x+y=(x+y)*1=(x+y)*(a/x+b/y) =a+b+(ay/x+bx/y) >=a+b+2根号(ay/x*bx/y) =a+b+2根号(ab)