已知共焦点的椭圆和双曲线,焦点为F1,F2,记它们其中的一个交点为P,且∠F1PF2=120°,则该椭圆离心率e1与双曲线离心率e2必定满足的关系式为(  ) A.14e1+34e2=1 B.34e12 +14e22=1 C.34e12+1

问题描述:

已知共焦点的椭圆和双曲线,焦点为F1,F2,记它们其中的一个交点为P,且∠F1PF2=120°,则该椭圆离心率e1与双曲线离心率e2必定满足的关系式为(  )
A.

1
4
e1+
3
4
e2=1
B.
3
4
e12 +
1
4
e22
=1
C.
3
4e12
+
1
4e22
=1
D.
1
4e12
+
3
4e22
 =1

由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,不妨令P在双曲线的右支上
由双曲线的定义|PF1|-|PF2|=2m  ①
由椭圆的定义|PF1|+|PF2|=2a  ②
又∠F1PF2=1200,故|PF1|2+|PF2|2+|PF1||PF2|=4c2   ③
2+②2得|PF1|2+|PF2|2=2a2+2m2
-①2+②2得|PF1||PF2|=a2-m2
将④⑤代入③得3a2+m2=4c2,即

3
c2
a2
+
1
c2
m2
=1,即
3
4e12
+
1
4e22
=1
故选C