已知y=(arcsinx)^2 求(1-X^2)y^(n+1)-(2n-1)xy^(n)-(n-1)^2*y^(n-1)=0 乘方除了^2其余全为导数
问题描述:
已知y=(arcsinx)^2 求(1-X^2)y^(n+1)-(2n-1)xy^(n)-(n-1)^2*y^(n-1)=0 乘方除了^2其余全为导数
题是这样的:
已知y=(arcsinx)^2,求(1-X^2)*y的(n+1)阶导数-(2n-1)*x*y的(n)阶导数-(n-1)^2*y(n-1)阶导数=0
答
这个用莱布尼茨法则当n=0时明显成立,两边求n次导即可得