三角形ABC中,AD是他的角平分线,且BD=CD,DE,DF分别垂直于AB,AC于E,F,请说明BE=CF

问题描述:

三角形ABC中,AD是他的角平分线,且BD=CD,DE,DF分别垂直于AB,AC于E,F,请说明BE=CF

因为AD是角平分线
角BAD=角CAD
且角AED=角AFD=90° AD是公共边
所以三角形AED与AFD全等所以DE=DF
且AD=CD 角BED=角CFD=90°
所以三角形BED与三角形CFD全等
所以 BE=CF