在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(1-sinC/2,-1),n=(1,sinC+cosC),且m⊥n

问题描述:

在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(1-sinC/2,-1),n=(1,sinC+cosC),且m⊥n
(1)sinC的值【求出来是3/4,
(2)若a^2+b^2=4(a+b)-8,求边c的长度【没解出来,不会用这个条件】

m垂直n,则 有m*n=1-sinC/2-(sinC+cosC)=0,sinC+cosC=1-sinC/2(1)sinC+cosC=1-sinC/2,移项得 sinC-sinC/2 = 1-cosC 由二倍角公式得 2sinC/2 cosC/2-sinC/2 = 2(sinC/2)^2 因为sinC/2≠0,所以两边消去sinC/2得 2cosC...