袋中有大小、形状相同的红、白球各一个,现依次有放回地随机摸取3次,每次摸取一个球. (I)求三次颜色全相同的概率; (Ⅱ)若摸到红球时得2分,摸到白球时得1分,求3次摸球所得总

问题描述:

袋中有大小、形状相同的红、白球各一个,现依次有放回地随机摸取3次,每次摸取一个球.
(I)求三次颜色全相同的概率;
(Ⅱ)若摸到红球时得2分,摸到白球时得1分,求3次摸球所得总分不小于5的概率.

(I)一共有8种不同的结果,列举如下:
(红、红、红、)、(红、红、白)、(红、白、红)、(红、白、白)、(白、红、红)、(白、红、白)、(白、白、红)、(白、白、白)…(2分)
记“三次颜色全相同”为事件A,
则事件A包含的基本事件为:(红、红、红、)、(白、白、白),
即A包含的基本事件数为2,基本事件总数为8,
所以事件A的概率为P(A)=

2
8
1
4
…(5分)
(II)记“3次摸球所得总分不小于5”为事件B
事件B包含的基本事件为:(红、红、白)、(红、白、红)、(白、红、红)、(红、红、红、),
事件B包含的基本事件数为4
由(1)可知,基本事件总数为8,所以事件A的概率为P(B)=
4
8
1
2
…(8分)