数列{an}满足a1=1,an+1=an+n+1(n∈N*),则1/a1+1/a2+…+1/a2013=_.
问题描述:
数列{an}满足a1=1,an+1=an+n+1(n∈N*),则
+1 a1
+…+1 a2
=______. 1 a2013
答
∵{an}满足a1=1,an+1=an+n+1(n∈N*),
a2-a1=1+1,
a3-a2=2+1,
a4-a3=3+1,
…
an-an-1=(n-1)+1,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+(1+1)+(2+1)+(3+1)+…+[(n-1)+1]
=n+1+2+3+…+(n-1)
=
,n(n+1) 2
∴
=1 an
=2(2 n(n+1)
−1 n
),1 n+1
∴
+1 a1
+…+1 a2
1 a2013
=2(1-
+1 2
-1 2
+…+1 3
−1 2013
)1 2014
=2(1-
)1 2014
=
.2013 1007
故答案为:
.2013 1007