数列{an}满足a1=1,an+1=an+n+1(n∈N*),则1/a1+1/a2+…+1/a2013=_.

问题描述:

数列{an}满足a1=1,an+1=an+n+1(n∈N*),则

1
a1
+
1
a2
+…+
1
a2013
=______.

∵{an}满足a1=1,an+1=an+n+1(n∈N*),
a2-a1=1+1,
a3-a2=2+1,
a4-a3=3+1,

an-an-1=(n-1)+1,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=1+(1+1)+(2+1)+(3+1)+…+[(n-1)+1]
=n+1+2+3+…+(n-1)
=

n(n+1)
2

1
an
2
n(n+1)
=2(
1
n
1
n+1
),
1
a1
+
1
a2
+…+
1
a2013

=2(1-
1
2
+
1
2
-
1
3
+…+
1
2013
1
2014

=2(1-
1
2014

=
2013
1007

故答案为:
2013
1007