1+sin 2x +cos 2x麻烦用二倍角公式简化下,

问题描述:

1+sin 2x +cos 2x麻烦用二倍角公式简化下,

解1+sin2x+cos2x
=1+sin2x+2cos^2x-1
=sin2x+2cos^2x
=2sinxcosx+2cos^2x
=2cosx(sinx+cosx)
=2√2cosxsin(x+π/4).最后一步怎么来的=2cosx(sinx+cosx)

=2cosx√2(√2/2sinx+√2/2cosx)

=2cosx√2sin(x+π/4)

=2√2cosxsin(x+π/4)。那最小值是多少2√2cosxsin(x+π/4)

=√2[sin(x+x+π/4)-sin(x-(x+π/4))]
=√2[sin(2x+π/4)-sin(-π/4)]
=√2[sin(2x+π/4)+sin(π/4)]
=√2sin(2x+π/4)+√2×√2/2
=√2sin(2x+π/4)+1
≤√2+1
故最大值为√2+1.谢谢啦