已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若bn=log2an+1,求数列{bn}的前n项和Sn.
问题描述:
已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an+1,求数列{bn}的前n项和Sn.
答
(Ⅰ)设等比数列{an}的公比为q,依题意有2(a3+2)=a2+a4,(1)
又a2+a3+a4=28,将(1)代入得a3=8.所以a2+a4=20.
于是有
a1q+a1q3=20
a1q2=8
解得
或
a1=2 q=2
a1=32 q=
1 2
又{an}是递增的,故a1=2,q=2.
所以an=2n.
(Ⅱ)bn=log22n+1=n+1.
故Sn=
.
n2+3n 2