垂直于X轴的直线叫双曲线b2x2-a2y2=a2b2 于MN两点,a1 a2 为双曲线顶点,求直线a1M与a2N的检点P的轨迹方程
问题描述:
垂直于X轴的直线叫双曲线b2x2-a2y2=a2b2 于MN两点,a1 a2 为双曲线顶点,求直线a1M与a2N的检点P的轨迹方程
答
设M(x',y'),N(x',-y'),P(x,y),A1(-a,0),A2(a,0),则直线A1M的方程为y=y'(x+a)/(x'+a)…①,直线A2N的方程为y=y'(x-a)/(x'-a)…②,①×②,得y²=-(y')²(x²-a)/[(x')²-a]…③,\x0d∵ 点M在双曲线b&su...