函数y=2cos^2x-sinxcosx的最小正周期是

问题描述:

函数y=2cos^2x-sinxcosx的最小正周期是

解由y=2cos^2x-sinxcosx
=2cos^2x-1-1/2*2sinxcosx+1
=cos2x-1/2sin2x+1
=√5/2(2/√5cos2x-1/√5sin2x)+1
=√5/2cos(2x+θ)+1
即最小正周期是T=2π/2=π.