已知函数f(x)=log21+x/1−x,(x∈(-1,1). (1)判断f(x)的奇偶性,并证明; (2)判断f(x)在(-1,1)上的单调性,并证明.

问题描述:

已知函数f(x)=log2

1+x
1−x
,(x∈(-1,1).
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)在(-1,1)上的单调性,并证明.

(1)f(−x)=log2

1+(−x)
1−(−x)
=log2
1−x
1+x
=log2(
1+x
1−x
)−1=−log2
1+x
1−x
=−f(x)
又x∈(-1,1),所以函数f(x)是奇函数
(2)设-1<x<1,△x=x2-x1>0,△y=f(x2)−f(x1)=log2
1+x2
1−x2
−log2
1+x1
1−x1
=log2
(1−x1)(1+x2)
(1+x1)(1−x2)

因为1-x1>1-x2>0;1+x2>1+x1>0所以
(1−x1)(1+x2)
(1+x1)(1−x2)
>1

所以△y=log2
(1−x1)(1+x2)
(1+x1)(1−x2)
>0
所以函数f(x)=log2
1+x
1−x
在(-1,1)上是增函数.