如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°. (1)证明:AB⊥PC; (2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.
问题描述:
如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(1)证明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.
答
(1)证明:因为△PAB是等边三角形,∠PAC=∠PBC=90°,PC=PC所以Rt△PBC≌Rt△PAC,可得AC=BC.如图,取AB中点D,连接PD、CD,则PD⊥AB,CD⊥AB,所以AB⊥平面PDC,所以AB⊥PC.(2)作BE⊥PC,垂足为E,连接AE.因...