函数F(X)满足F[1/(X+|X|)]=LOG2√(X|X|),则F(X)的解析式是 LOG2是以2为底的对数
问题描述:
函数F(X)满足F[1/(X+|X|)]=LOG2√(X|X|),则F(X)的解析式是 LOG2是以2为底的对数
LOG2是以2为底的对数
答
∵√(X|X|)有意义,且真数√(X|X|)>0
∴x>0
∴原等式化为F(1/2x)=log2 x
令1/2x=t
即x=1/2t
得F(t)=log 2 1/2t=-log2 2t
即F(x)=-log2 2x