y=ln√(x(x+2)/(x+3))的导数:根号里x(x+2)是分子,x+3是分母,
问题描述:
y=ln√(x(x+2)/(x+3))的导数:根号里x(x+2)是分子,x+3是分母,
答
y=ln√(x(x+2)/(x+3))y'=[1/√(x(x+2)/(x+3))]*[√(x(x+2)/(x+3))]'=(1/2)*1/[√(x(x+2)/(x+3))]^2*[(x(x+2)/(x+3)]'=(x+3)/[2x(x+2)]*[(x(x+2)/(x+3)]'[x(x+2)/(x+3)]'={[x(x+2)]'*(x+3)-x(x+2)*(x+3)'}/(x+3)^2=(x...