数列11/3,21/9,31/27,41/81,…的前n项和是_.

问题描述:

数列1

1
3
,2
1
9
,3
1
27
,4
1
81
,…的前n项和是______.

1

1
3
+2
1
9
+3
1
27
+4
1
81
+n
1
3n
=(1+2+3+…+n)+(
1
3
+
1
9
+…+
1
3n

=
n(n+1)
2
+
1
3
1
3n+1
1−
1
3
=
n2+n+1
2
1
2•3n

故答案为:
n2+n+1
2
1
2•3n