1*1+2*2+3*3+4*4+5*5+...+25*25=5525你能得出2*2+4*4+5*6*6+8*8+10*10+...+50*50等于多少

问题描述:

1*1+2*2+3*3+4*4+5*5+...+25*25=5525你能得出2*2+4*4+5*6*6+8*8+10*10+...+50*50等于多少

这是高中知识啊
证明1+4+9+……+N2=N(N+1)(2N+1)/6
1,N=1时,1=1(1+1)(2×1+1)/6=1
2,N=2时,1+4=2(2+1)(2×2+1)/6=5
3,设N=x时,公式成立,即1+4+9+……+x2=x(x+1)(2x+1)/6
则当N=x+1时,
1+4+9+……+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2
=(x+1)[2(x2)+x+6(x+1)]/6
=(x+1)[2(x2)+7x+6]/6
=(x+1)(2x+3)(x+2)/6
=(x+1)[(x+1)+1][2(x+1)+1]/6
也满足公式
4,综上所述,平方和公式1+4+9+……+N2=N(N+1)(2N+1)/6成立,得证.
2*2+4*4+6*6+……+100*100
=4(1^2+2^2+...+50^2)
=自己算