设函数f(x)在【0,1】上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:
问题描述:
设函数f(x)在【0,1】上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:
在(0,1)内至少存在一点C使f’(C)=0
答
因为3∫f(x)dx=3f(k)(1-2/3)=f(k)其中k∈(2/3,1)(这里用的是定积分的中值定理)
所以f(0)=f(k)
故根据罗尔定理,可知道,在(0,k)上存在一点c使得,f‘(c)=0
因此在(0,1)内至少存在一点C使f’(C)=0