设△ABC是锐角三角形a.b.c分别是内角A.B.C所对边长,并且sin^A=sin(π/3+B)sin(π/3-B)+sin^B.1.求角A的
问题描述:
设△ABC是锐角三角形a.b.c分别是内角A.B.C所对边长,并且sin^A=sin(π/3+B)sin(π/3-B)+sin^B.1.求角A的
2.若向量AB*向量AC=12,a=2√7,求b,c(其中b<c)
答
sin^2A=sin(60+B)sin(60-B)+sin^2Bsin^2A=-1/2(cos(60+B+60-B)-cos(60+B-60+B)+sin^2Bsin^2A=-1/2(-1/2-cos2B)+1/2(1-cos2B)1/2(1-cos2A)=-1/2(-1/2-cos2B)+1/2(1-cos2B)1-cos2A=1/2+cos2B+1-cos2Bcos2A=-1/22A=120...若向量AB*向量AC=12,,a=2√7,,求b,c(其中b<c)