如图,正四面体A-BCD(空间四边形的四条边长及两对角线的长都相等)中,E,F分别是棱AD,BC的中点,则EF和AC所成的角的大小是_.

问题描述:

如图,正四面体A-BCD(空间四边形的四条边长及两对角线的长都相等)中,E,F分别是棱AD,BC的中点,则EF和AC所成的角的大小是______.

如图,取AB的中点G,连接FG,EG
则∠GEF是直线EF和直线AC所成的角,
EG=

1
2
BD,FG=
1
2
AC,
∵BD=AC∴EG=FG,
又∵空间四边形的四条边长及两对角线的长都相等
∴AC⊥BD即EG⊥FG,∴∠GEF=45°,
故答案为45°.