设f(x)在[0,3]上可微,且在(0,3)内f'(x)≥2.如果f(0)≥4,证明:f(3)≥10

问题描述:

设f(x)在[0,3]上可微,且在(0,3)内f'(x)≥2.如果f(0)≥4,证明:f(3)≥10

用拉格朗日定理就OK了,(f(3)-f(0))/(3-0)=f'(ξ)≥2,然后就化简一下得出f(3)≥10