已知向量a,b满足|a|=|b|=1,实数m,n满足m^2+n^2=1.则|ma+nb|的取值范围是
问题描述:
已知向量a,b满足|a|=|b|=1,实数m,n满足m^2+n^2=1.则|ma+nb|的取值范围是
|ma+nb|≤|ma|+|nb|≤√2(m^2+n^2)
答
|ma+nb|
已知向量a,b满足|a|=|b|=1,实数m,n满足m^2+n^2=1.则|ma+nb|的取值范围是
|ma+nb|≤|ma|+|nb|≤√2(m^2+n^2)
|ma+nb|