求双曲线9y^2-16x^2=144的实半轴长、虚半轴长、焦点坐标、离心率、渐近线方程.
问题描述:
求双曲线9y^2-16x^2=144的实半轴长、虚半轴长、焦点坐标、离心率、渐近线方程.
方程两边同除以144,原式化为标准方程:y^2/16-x^2/9=1
则a^2=16,b^2=9,c^2=a^2+b^2=25
得a=4,b=3,c=5
易知实半轴长:4 虚半轴长:3 焦点坐标:(0,5),(0,-5)离心率:e=c/a=5/4
渐近线方程:y=±a/b x=±4/3 x 在双曲线中a,b的大小不是确定的,那为什么就能说a^2=16,b^2=9呢?为什么不是a^2=9,b^2=16呢?
共轭双曲线a^2就能为负数啊?
答
请参考以下双曲线的定义恩,你只看几何性质那段 a和b决定的是焦点在哪个数轴