1方+2方+3方+4方+.+n方化简
问题描述:
1方+2方+3方+4方+.+n方化简
答
1方+2方+3方+4方+.+n方
=n(n+1)(2n+1)/6这是公式,推导过程很麻烦,只要会用就可以了1×1+2×2+3×3+……+n×n=n(n+1)(2n+1)/6 来历是:用完全立方公式和等差数列求和公式推导 因为: (n+1)^3=n^3+3n^2+3n+1 在这个等式中,让依次取从1开始的n个连续的自然数,就得到n个相对应的等式, 2^3=1^3+3×1^2+3×1+1 3^3=2^3+3×2^2+3×2+1 4^3=3^3+3×3^2+3×3+1 ……………… (n+1)^3=n^3+3n^2+3n+1 将这个等式中等号两边的式子分别加起来,划去等号两边相同的数,就得到, (n+1)^3=1+3(1^2+2^2+3^2+……+n^2)+3(1+2+3+……+n)+n 第二个括号内的和就是一个等差数列,和为n(1+n)÷2,于是 (n+1)^3=1+3(1^2+2^2+3^2+……+n^2)+3n(n+1)÷2+n 所以, 3(1^2+2^2+3^2+……+n^2)= (n+1)^3-3n(n+1)÷2-(n+1) =n^3+3n^2+3n+1-3n^2/2-3n/2-n-1 =n^3+3/2n^2+n/2 所以, 1^2+2^2+3^2+……+n^2=1/3(n^3+3n^2/2+n/2) =n(n+1)(2n+1)/6