已知双曲线x^2-y^2=2的右焦点为F,过点F的动直线与双曲线相交于A,B两点,点C的坐标是(1,0)
问题描述:
已知双曲线x^2-y^2=2的右焦点为F,过点F的动直线与双曲线相交于A,B两点,点C的坐标是(1,0)
(1)证明:向量CA×CB为常数
(2)若动点M满足向量CM=CA+CB+CO(O为坐标原点),求点M的轨迹方程
答
应该是点乘吧?向量CA·CB;(1)证明:设A,B两点分别为(x1,y1),(x2,y2),由题意知在双曲线中:a=√2,b=√2,c=2,F坐标为(2,0),向量CA=(x1-1,y1),向量CB=(x2-1,y2),CA·CB=(x1-1)*(x2-1)+y1*y2 ①下面分两种...