[(x*根号下1-y的平方)]dx+[y*根号下1-x的平方]dy=0

问题描述:

[(x*根号下1-y的平方)]dx+[y*根号下1-x的平方]dy=0

[x√(1-y²)]dx+[y√(1-x²)]dy=0[y√(1-x²)]dy=-[x√(1-y²)]dx分离变量得 ydy/√(1-y²)=-xdx/√(1-x²)取积分得:-(1/2)∫d(1-y²)/√(1-y²)=(1/2)∫d(1-x²)/√(1-x...