点P是三角形ABC所在平面外一点,若PA、PB、PC与这个平面所成角相等,则点P在平面ABC上的射影是三角形什么心

问题描述:

点P是三角形ABC所在平面外一点,若PA、PB、PC与这个平面所成角相等,则点P在平面ABC上的射影是三角形什么心

外心.
作PO⊥ 平面ABC于O,连结OA、OB、OC,则∠PCO、∠PBO、∠PAO分别是PC、PB、PA与平面ABC所成的角,所以∠PCO=∠PBO=∠PAO.
易证ΔPAO≌ΔPBO≌ΔPCO∴OA=OB=OC∴点O是ΔABC的外心 ,即……