如图,在等腰梯形ABCD中,AD∥BC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点. (1)求证:四边形MENF是菱形; (2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.
问题描述:
如图,在等腰梯形ABCD中,AD∥BC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点.
(1)求证:四边形MENF是菱形;
(2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.
答
(1)证明:∵四边形ABCD为等腰梯形,
∴AB=CD,∠A=∠D,
∵M为AD的中点,
∴AM=DM,
在△ABM和△DCM中,
AM=DM ∠A=∠D AB=DC
∴△ABM≌△DCM(SAS),
∴BM=CM,
∵点E,F,N分别是BM,CM,BC的中点,
∴EN=
CM,FN=1 2
BM,ME=1 2
BM,MF=1 2
CM,1 2
∴EN=FN=FM=EM,
∴四边形MENF是菱形.
(2)连结MN,
∵BM=CM,BN=CN,
∴MN⊥BC,
∵AD∥BC,
∴MN⊥AD,
∴MN是梯形ABCD的高,
又∵四边形MENF是正方形,
∴△BMC为直角三角形,
又∵N是BC的中点,
∴MN=
BC,1 2
即等腰梯形ABCD的高是底边BC的一半.