在三角形ABC中,AB=4,BC=2根号2,且BA向量乘BC向量=-8,则AC=多少

问题描述:

在三角形ABC中,AB=4,BC=2根号2,且BA向量乘BC向量=-8,则AC=多少

cosB=(向量BA*向量BC)/(|AB|*|BC|)=-8/[4*(2√2)]=-1/√2由余弦定理:AC²=AB²+BC²-2AB*BC*cosB=4²+(2√2)²-2*4*(2√2)*(-1/√2)=16+8+16=40∴AC=√40=2√10