30min内解决分数双倍
问题描述:
30min内解决分数双倍
设sn是等比数列{an}前n项,且s3,s9,s6成等差数列
(1)若a2,a8,am成等差数列,求m
(2)若a1=1,bn=log2(小2)|a3n+1|,cn=1/|bn*bn+1|,数列{cn}的前n项和为Tn,是否存在正整数m,n(1<m<n)使得T1,Tm,Tn成等比数列?若存在,求出m,n若不存在,说明理由
答
1.易得q≠1,a1≠0,2s9=s3+s6,解得q=(-2)^-1/32a8=a2+am,解得m=52.由1得bn=-n,cn=1/n*(n+1),裂项得Tn=1-1/n+1假设存在m.n,有:Tm^2=Tn.T1化简得m^2-2mn-n=0(2n+2)^2>4(n^2+n)>(2n)^2,故无整数m....