阅读材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到:因为3100=34×25,所以3100的个位数字与34的个位数字相同,应为1;因为32009=34×502+1,所以32009的个位数字与31的个位数字相同,应为3.(1)请你仿照材料,分析求出299的个位数字及999的个位数字;(2)请探索出22010+32010+92010的个位数字;(3)请直接写出92010-22010-32010的个位数字.

问题描述:

阅读材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,
不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到:
因为3100=34×25,所以3100的个位数字与34的个位数字相同,应为1;
因为32009=34×502+1,所以32009的个位数字与31的个位数字相同,应为3.
(1)请你仿照材料,分析求出299的个位数字及999的个位数字;
(2)请探索出22010+32010+92010的个位数字;
(3)请直接写出92010-22010-32010的个位数字.

(1)由21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,
不难发现2的正整数幂的个位数字以2、4、8、6为一个周期循环出现,由此可以得到:
∵299=24×24+3
∴299的个位数字与23的个位数字相同,应为8.
不难发现9的正整数幂的个位数字以9、1为一个周期循环出现,由此可以得到:
∵999=92×49+1
∴999的个位数字与91的个位数字相同,应为9.
(2)∵22010=24×502+2
∴22010的个位数字与22的个位数字相同,应为4;
∵32010=34×502+2
∴32010的个位数字与32的个位数字相同,应为9;
∵92010=92×1005
∴92010的个位数字与92的个位数字相同,应为1.
∴4+9+1=14.
∴22010+32010+92010的个位数字为4;
(3)92010-22010-32010的个位数字为21-4-9=8.
答案解析:(1)此题不难发现:2n的个位数字是2,4,8,6四个一循环,所以99÷4=24…3,则299的个位数字是8;9n的个位数字是9,1两个一循环,所以99÷2=49…1,则999的个位数字是9.
(2)分别找出22010和32010和92010的个位数字,然后个位数字相加所得个位数字就是22010+32010+92010的个位数字.
(3)分别找出92010和22010和32010的个位数字,然后个位数字相减所得个位数字就是92010-22010-32010的个位数字,注意不够借位再减.
考试点:尾数特征;有理数的乘方.


知识点:此题主要是考查乘方的尾数特征,解题关键是发现个位数字的循环规律,根据规律进行计算.