数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*). (Ⅰ)求数列{an}的通项an; (Ⅱ)求数列{nan}的前n项和Tn.
问题描述:
数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求数列{an}的通项an;
(Ⅱ)求数列{nan}的前n项和Tn.
答
(I)∵an+1=2Sn,
∴Sn+1-Sn=2Sn,
∴
=3.Sn+1 Sn
又∵S1=a1=1,
∴数列{Sn}是首项为1、公比为3的等比数列,Sn=3n-1(n∈N*).
∴当n≥2时,an-2Sn-1=2•3n-2(n≥2),
∴an=
1
,n=1
2•3n−2
,n≥2
(II)Tn=a1+2a2+3a3+…+nan,
当n=1时,T1=1;
当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2,①3Tn=3+4•31+6•32+…+2n•3n-1,②
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1=2+2•
−2n•3n−1=-1+(1-2n)•3n-13(1−3n−2) 1−3
∴Tn=
+(n-1 2
)3n-1(n≥2).1 2
又∵Tn=a1=1也满足上式,∴Tn=
+(n-1 2
)3n-1(n∈N*)1 2