点A为△BCD所在平面外的一点,点O为点A在平面BCD内的射影,若AC⊥BD,AD⊥BC,求证:AB⊥CD.

问题描述:

点A为△BCD所在平面外的一点,点O为点A在平面BCD内的射影,若AC⊥BD,AD⊥BC,求证:AB⊥CD.

证明:由已知中点O为点A在平面BCD内的射影,
∴AO⊥平面BCD,即AO⊥BC,AO⊥BD,AO⊥CD
∵AC⊥BD,AC∩AO=A
∴BD⊥平面OAC,BD⊥CO,
同理由AD⊥BC可证BC⊥D0,
即O为△BCD的垂心,
∴CD⊥OB,又由OB∩AO=0
∴CD⊥平面AOB
又由AB⊂平面AOB
∴AB⊥CD