过x^2-y^2=1右焦点的直线交双曲线于A,B,AB为圆的直径,求圆是否过原点,若过原点则斜率K为多少?

问题描述:

过x^2-y^2=1右焦点的直线交双曲线于A,B,AB为圆的直径,求圆是否过原点,若过原点则斜率K为多少?

一般情况,不经过原点,只有特定条件才经过原点,
当OA垂直OB时,三角形AOB是RT三角形,才经过原点,
a=1,b=1,c=√2,
AB方程为:y=k(x-√2),
设A(x1,y1),B(x2,y2),
向量OA·OB=0,
x1x2+y1y2=0,
y1=k(x1-√2),
y2=k(x2-√2),
(1+k^2)x1x2-√2k^2(x1+x2)+2k^2=0,(1)
x^2-k^2(x-√2)^2=1,
(1-k^2)x^2+2√2k^2x-2k^2-1=0,
根据韦达定理,
x1+x2=-2√2k^2/(1-k^2),
x1*x2=-(2k^2+1)/(1-k^2),
代入(1)式,
-(1+k^2)(2k^2+1)/(1-k^2)-√2k^2*[-2√2k^2/(1-k^2)]+2k^2=0,
-k^2-1=0,
∴k无解,圆不经过原点.