如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC. (1)求证:四边形AEFG是平行四边形; (2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.

问题描述:

如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.

(1)求证:四边形AEFG是平行四边形;
(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.

证明:(1)∵在梯形ABCD中,AB=DC,∴∠B=∠C.∵GF=GC,∴∠C=∠GFC,∴∠B=∠GFC∴AB∥GF,即AE∥GF.∵AE=GF,∴四边形AEFG是平行四边形.(2)∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠...