求函数y=2sin(2x+π/3)(-π/6≤x≤π/6)的最大值和最小值,并写出取得最值时x的集合

问题描述:

求函数y=2sin(2x+π/3)(-π/6≤x≤π/6)的最大值和最小值,并写出取得最值时x的集合

y=2sin(2x+π/3)-π/6≤x≤π/6-π/3≤2x≤π/30≤2x+π/3≤2π/3有:0≤sin(2x+π/3)≤1所以:0≤2sin(2x+π/3)≤2即:0≤y≤2可见:y的最大值是2、最小值是0y=2时,2x+π/3=π/2,有:x=π/12y=0时,2x+π/3=0,有:x=...