y=-x和曲线y=x^3-4x^2+4x-2围成的图形的面积为

问题描述:

y=-x和曲线y=x^3-4x^2+4x-2围成的图形的面积为

(x^3-4x^2+4x-2)-(-x)=x^3-4x^2+5x-2=x(x-2)^2+(x-2)=(x-2)(x^2-2x+1)=(x-2)(x-1)^2y=-x和曲线y=x^3-4x^2+4x-2在区间[1,2]围成封闭区域,且-x>=x^3-4x^2+4x-2.所求面积=积分[1,2][-x-x^3+4x^2-4x+2]dx=[1,2](-x^4/4+4...