点A(1,1)到直线xcosθ+ysinθ-2=0的距离的最大值是(  ) A.1+2 B.2+2 C.1+3 D.2+3

问题描述:

点A(1,1)到直线xcosθ+ysinθ-2=0的距离的最大值是(  )
A. 1+

2

B. 2+
2

C. 1+
3

D. 2+
3

点A(1,1)到直线xcosθ+ysinθ-2=0的距离d=

|cosθ+sinθ−2|
cos2θ+sin2θ
=2−
2
sin(θ+
π
4
)

当且仅当sin(θ+
π
4
)
=-1时d取得最大值,d=2+
2

故选:B.