定义域为R的函数f(x)满足:f(x+y)=f(x).f(y)对任意实数都成立,存在实数x1x2是f(x1)不等于f(x2)求证f(0)=1x1不是x乘于1的意思,而是表示一个x即1是x的下标还有第二问f(x)大于0

问题描述:

定义域为R的函数f(x)满足:f(x+y)=f(x).f(y)对任意实数都成立,存在实数x1x2是f(x1)不等于f(x2)求证f(0)=1
x1不是x乘于1的意思,而是表示一个x即1是x的下标
还有第二问f(x)大于0

证:
(1) 因f(x+y)=f(x)f(y)对任意实数都成立.
可令 y=0
则 f(x+0) = f(x)f(0)
即f(x)=f(x)f(0)
又因存在实数x1,x2使f(x1)≠f(x2)
则f(x)≠0
所以有 f(0) = 1
得证.
(2) 令y=x≠0
则有
f(x+x) = f(x)f(x)
即f(2x) = [f(x)]^2
因f(x)≠0,所以[f(x)]^2>0
所以
f(2x)>0
即 f(x)>0
得证.