如图,已知AO是四面体ABCD的高,M是AO的中点,连接BM、CM、DM.求证:BM、CM、DM两两垂直.
问题描述:
如图,已知AO是四面体ABCD的高,M是AO的中点,连接BM、CM、DM.求证:BM、CM、DM两两垂直.
答
证明:∵AO是四面体ABCD的高,∴AO垂直于面ABCD.
连接OB,OC,OD,则AO分别垂直于OB,OC,OD.
设正四面体ABCD的边长为a,
则AB=BC=CD=DA=a,OB=OC=OD=
a,
3
3
OA2=AD2-OD2,
OA=
,OM=
a
6
3
,
a
6
6
BM2=OM2+OB2,BM=CM=DM=
,
a
2
2
在三角形MBC中,MB2+MC2=BC2,符合勾股定理,
∴△MBC为直角三角形,且∠CMB=90°,
同理得出,∠CMD=∠DMB=∠BMC=90°,
∴BM,CM,DM两两垂直.