tan^2α=2tan^2 β+1则 cos2α+sin^2β等于?

问题描述:

tan^2α=2tan^2 β+1则 cos2α+sin^2β等于?

tan^2α=2tan^2 β+1
1+tan²α=2(1+tan²β)
sec²α=2sec²β
1/cos²α=2/cos²β
2cos²α=cos²β
cos²α=(1-sin²β)/2
(1+cos2α)/2=(1-sin²β)/2
1+cos2α=1-sin²β
cos2α+sin²β=1-1
cos2α+sin²β=0不用sec能做吗?tan²α=2tan²β+11+tan²α=2(1+tan²β)1+sin²α/cos²α=2(1+sin²β/cos²β)(cos²α+sin²α)/cos²α=2[(cos²β+sin²β)/cos²β]1/cos²α=2/cos²β2cos²α=cos²βcos²α=(1-sin²β)/2(1+cos2α)/2=(1-sin²β)/21+cos2α=1-sin²βcos2α+sin²β=1-1cos2α+sin²β=0