已知cos(a+b)=4/5,cos(a-b)=-4/5,3π/2

问题描述:

已知cos(a+b)=4/5,cos(a-b)=-4/5,3π/2

3π/2所以sin(a+b)sin(a-b)>0
由(sinx)^2+(cosx)^2=1
所以sin(a+b)=-3/5,sin(a-b)=3/5
cos2b=cos[(a+b)-(a-b)]
=cos(a+b)cos(a-b)+sin(a+b)sin(a-b)
=-16/25-9/25
=-1