如图,矩形ABCD中,AD=3cm,AB=2cm,点E沿A→D方向移动,点F沿D→A方向移动,速度都是1cm/s.如果E、F两点同时移动,且当E、F两点相遇即停止.设移动时间是t(s). (1)当BE与CF所在直线的夹
问题描述:
如图,矩形ABCD中,AD=3cm,AB=2cm,点E沿A→D方向移动,点F沿D→A方向移动,速度都是1cm/s.如果E、F两点同时移动,且当E、F两点相遇即停止.设移动时间是t(s).
(1)当BE与CF所在直线的夹角是60°时,t是多少?
(2)当四边形BCFE的对角线BF与CE的夹角是90°时,t是多少?
(3)当△ABE的外接圆与△CDF的外接圆外切时,t是多少?
答
(1)当BE与CF所在直线的夹角是60°,如图1,
∵速度都是1cm/s.
∴BE=CF,
∴GE=GF,
∴∠AEB=∠GEF=∠EGF=∠GFE=60°,
∵四边形ABCD为矩形,
∴AE=AB÷tan∠AEB=2÷
=
3
2 3
,
3
∴当t=
2 3
时,BE与CF所在直线的夹角是60°;
3
(2)如图2,四边形BCFE的对角线BF与CE的夹角是90°时,
∵BE=CF,
∴∠EBC=∠FCB
∴△EBC≌△FCB
∴∠BEC=∠CFB
∴△BEG∽△CFG
∴CG=BG,
∵∠BGC=90°,
∴∠FBC=∠ABF=45°,
∴AF=AB=2,DF=1
∵移动速度速度为1cm/s,
∴当t=1时,四边形BCFE的对角线BF与CE的夹角是90°.
(3)如图3,当△ABE的外接圆与△CDF的外接圆外切时,
∵四边形ABCD是矩形,
∴两圆的直径分别为AE和CF,
∴BE=CF=
,
22+t2
∵AE=DF=t,
∴EF=3-2t,
∴MN=(3-2t+3)÷2=3-t,
∴
=3-t,
22+t2
解得:t=
,5 6
∴当t=
时,△ABE的外接圆与△CDF的外接圆外切.5 6