已知二次函数y=ax^2+bx-2的图像经过点(1,0),一次函数图像经过原点和点(1,-b),其中a>b>0且a、b为实数,
问题描述:
已知二次函数y=ax^2+bx-2的图像经过点(1,0),一次函数图像经过原点和点(1,-b),其中a>b>0且a、b为实数,
(1)求一次函数表达式 ,用含b的式子表示
(2)试说明这俩个函数的图象交于不同的两点
(3)设(2)中的两个交点的横坐标分别为x1,x2,求|x1-x2|的范围.
答
本题难点在于第三问,求出|x1-x2|表达式不难,难点在于确定其取值范围
即当时b在区间(0,1)上,|x1-x2|的取值范围
在求结果的过程我认为还是应用函数的方法,逻辑严密,实际上是求b在区间(0,1)上,|x1-x2|值域,在不清楚函数变化曲线情况下,必须证明在区间(0,1)上函数单调,然后代入端值,即可得出结果.
已知二次函数y=ax^2+bx-2的图象经过点(1,0)一次函数图像经过原点和点(1,-b),其中a>b>0,且a,b为实数
⑴求一次函数表达式 (用含b的式子表示)
⑵试说明这两个函数的图象交于不同的两点
⑶设⑵中的两个交点的横坐标分别为x1,x2,求|x1-x2|的范围
(1)解析:∵一次函数图像经过原点和点(1,-b),其中a>b>0
∴其方程为:y=-bx
(2)解析:将一次函数代入二次函数得ax^2+bx-2=-bx
ax^2+2bx-2=0
⊿=4b^2+8a
∵a>b>0,∴⊿>0,方程有二个不等实根,即二函数有二个不同的交点.
(3)解析:由(2)得ax^2+2bx-2=0
∵二次函数y=ax^2+bx-2的图象经过点(1,0)
∴a+b-2=0==>a=2-b
由a>b>0得2-b>b==>0