求极限:lim x→0 ln[1+sin^2(x)]/[e^(x^2)-1]

问题描述:

求极限:lim x→0 ln[1+sin^2(x)]/[e^(x^2)-1]

罗比达法则:
分子分母同时求导数,再化简。去掉等价无穷小。得到答案。
1

思路:这是0/0型极限,使用罗必达法则,分式上下求导后再求极值.lim ln[1+sin^2(x)]/[e^(x^2)-1] (x→0)=lim 2sinx·cosx/{2xe^(x^2)·[1+sin^2(x)]}=lim (sinx/x)·cosx/{e^(x^2)·[1+sin^2(x)]}=1...