在△ABC中,已知内角A,B,C所对的边分别为a,b,c,acosB+bcosA=csinC则sinA+sinB的最大值为
问题描述:
在△ABC中,已知内角A,B,C所对的边分别为a,b,c,acosB+bcosA=csinC则sinA+sinB的最大值为
答
acosB+bcosA=csinC
sinAcosB+sinBcosA=sinc^2
sin(A+B)=sinC^2
sinC=1 C=90
sinA+sinB=sinA+sin(A+C)=sinA+cosA=根号2sin(A+π|4)
最大值为根号二sinAcosB+sinBcosA=sinc^2这一步怎么得出来的?