已知f(x)在其定义域(0,+∞)上为增函数,f(2)=1,若f(xy)=f(x)+f(y),解不等式f(x)+f(x-2)≤3.

问题描述:

已知f(x)在其定义域(0,+∞)上为增函数,f(2)=1,若f(xy)=f(x)+f(y),解不等式f(x)+f(x-2)≤3.

∵f(x)在其定义域(0,+∞)上为增函数,f(2)=1,
∴f(4)=2,f(8)=f(4×2)=3,
 又∵f(xy)=f(x)+f(y),
∴不等式f(x)+f(x-2)≤3 即 f(x(x-2))≤f(8),

x>0    
x−2>0  
x(x−2)≤ 8  
,∴2<x≤4,
故不等式的解集是 {x|2<x≤4 }.